The Magnetic
Vector Potential

From the magnetic form of Gauss's Law V-B(r)=0, it is
evident that the magnetic flux density B(r) is a solenoidal
vector field.

Recall that a solenoidal field is the curl of some other vector
field, e.g.,:
B(r)=VxA(r)

Q: The magnetic flux density B(r) is the cur/ of what
vector field 2?

A: The magnetic vector potential A(r)!

The curl of the magnetic vector potential A(r) is equal to the
magnetic flux density B(r):

VXA(F) = B(F)

where:



maghetic vector potential =A(r) {V:/net:er's}
eter

Vector field A(r) is called the magnetic vector potential

because of its analogous function to the electric scalar
potential V (r).

An electric field can be determined by taking the gradient of
the electric potential, just as the magnetic flux density can be
determined by taking the curl of the magnetic potential:

E(r)=-VV(r) B(r)=VxA(r)
Yikes! We have a big problem!

There are actually (infinitely) many vector fields A(r) whose
curl will equal an arbitrary magnetic flux density B(r). In
other words, given some vector field B(r), the solution A(r) to
the differential equation VXA (r)=B(r) is not unique !

But of course, we knew this!

To completely (i.e., uniquely) specify a vector field, we need to
specify both its divergence and its curl.



Well, we know the curl of the magnetic vector potential A(r) is
equal to magnetic flux density B(r). But, what is the
divergence of A(r) equal fo? LE.;

V-A(r)= 2??
By answering this question, we are essentially defining A(r).

mmmm)> | ct's define it in so that it makes our computations
easier!

To accomplish this, we first start by writing Ampere's Law in
terms of magnetic vector potential:

VxB(r) = VXVxXA(r) = u,J (r)
We recall from section 2-6 that:

VXVXA(F)=V(V-A(r))-V?A(r)

Thus, we can simplify this statement if we decide that the
divergence of the magnetic vector potential is equal to zero:

V- A(F)=0

We call this the gauge equation for magnetic vector potential.
Note the magnetic vector potential A(r) is therefore also a

solenoidal vector field.



As a result of this gauge equation, we find:

VXVXA(F)=V(V-A(r))-V?A(r)
=-V°A(r)

And thus Ampere's Law becomes:

VxB(F) = -V2A(F) = 1,J (F)

Note the Laplacian operator V? is the vector Laplacian, as it
operates on vector field A(r).

Summarizing, we find the magnetostatic equations in terms of
magnetic vector potential A(r) are:

VXA(F) =B(F)
V2A(F) = —od (F)

V-A(r)=0

Note that the magnetic form of Gauss's equation results in the
equation V-VxA(r)=0. Why don't we include this equation in

the above list?



Compare the magnetostatic equations using the magnetic vector
potential A(r) to the electrostatic equations using the electric

scalar potential V' (r):

-VV(r)=E(r)

VZV(F)z—'D"(r)
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Hopefully, you see that the two potentials A(r) and V' (r) are in
many ways analogous.

For example, we know that we can determine a static field E(r)
created by sources p,(r) either directly (from Coulomb's Law),
or indirectly by first finding potential V/ (r) and then taking its
derivative (i.e., E(r)=-VV(r)).

Likewise, the magnetostatic equations above say that we can
determine a static field B(r) created by sources J(r) either

directly, or indirectly by first finding potential A(r) and then
taking its derivative (i.e., VxA(r)=B(r)).

p(F) = V(F) = EF)

J(r) = A(r) = B(r)



